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Abstract. The numerical solution of the Bethe ansafz equations of the n-channel Kondo 
problem is presented. The thermodynamics of the impurity is obtained as a function of 
temperature, external field, impurity spin S and the number ofchannels. Three situations 
have to be distinguished: (i) If n = 2s the conduction electrons exactly compensate the 
impurity spin into a singlet at low temperatures, (ii) if n < 2s the impurity spin is only 
partiallycompensated(undercompensated),and(iii)ifn > 21itheimpurityspinissaidto be 
overcompensated giving rise to critical behaviour. The results are briefly discussed in the 
contextofmagneticimpurities. the quadrupolar Kondo effect, an impurityspinembedded in 
theTakhtajan-Babujianmodel and a two-level system interactingwitb conduction electrons. 

1. Introduction 

Probably the most exciting model of a magnetic impurity embedded in a lattice is the n- 
channel Kondo problem. The first exhaustive analysis of the model is due to Nozi&res 
and Blandin [I] within a renormalization group approach. The Hamiltonian was then 
later diagonalized by means of Bethe’s ansntz by Andrei and Destri [2] and Wiegmann 
and Tsvelick [4. Three situations have to be distinguished (n is the number of orbital 
conduction electron Channels and S is the impurity spin). 

(i) If n = 2s the number of conduction electron channels is exactly sufficient to 
compensate the impurity spin into a singlet, giving rise to Fermi-liquid behaviour. This 
situation is believed to be realized for Fe and Cr impurities in simple metals [4], like Cu 
and Ag. 

(ii) If n < 2 s  the impurity spin is only partially compensated (undercompensated 
spin), since there are not enough conduction electron channels to yield a singlet ground 
state. This leaves an effective degeneracy (in zero field) at low temperatures of 
(25 + 1 - n). The integer-valent limit of impurities with two magnetic configurations 
like Tm [5] could be related to this situation. 

(iii) If n > 25 the number of conduction-electron channels is larger than required to 
compensate the impurity spin. The impurity is said to be overcompensated and critical 
behaviour is obtained [6]. Applications for this case are the quadrupolar Kondo effect 
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[7.8] and a two-level system interacting with several conductionelectron channelsclose 
to the strong coupling fixed point [9,  lo]. 

A magnetic impurity embedded in the Takhtajan-Babujian generalization of the 
Heisenberg chain has thermodynamic properties which are closely related to the three 
situationsdescribed above [ll, 121. 

In this paper we present the numerical solution of the thermodynamic Bethe ansatz 
equations of the n-channel Kondo problem for S < 5/2 and n < 5. In particular, the 
magnetic field and temperature dependence of the entropy, the specific heat and the 
susceptibility is discussed. This extends our previous results [4,8,10,13] which are 
limited to  the situations (i) n = 1 and arbitrary S,  (U) n = 2.9 and (iii) S = 4 and arbitrary 
n .  The zero-field thermodynamics for n,  2 s  < 5 was previously obtained by Desgranges 

The rest of the paper is organized as follows. In section 2 we summarize the thermo- 
dynamic Bethe ansatz equations for the model (previously derived by Andrei and Destri 
[2] and Tsvelick [6]) and sketch the numerical procedure used to solve these equations. 
The results are presented in section 3 and are discussed in the context of possible 
applications and related models. Some concluding remarks follow in section 4. 
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2. Bethe ansatz equations and numerical procedure 

The n-channel Kondo model for an impurity spin Sand an arbitrary number of orbital 
conduction electron channels is given by 

H~ = C Ekahnoakmmo + J C s . a ~ , ~ u , , + ~ ~  (1) 
k.m.0 k.V.m 

0.0' 

where S are the spin operators describing the magnetic impurity, J is the anti- 
ferromagnetic coupling constant and m labels the orbital channels. Although the 
Hamiltonian is diagonal in m the different orbital channels are not independent of each 
other. On the contrary, the exact solutionshows that theyarestronglycoupledandform 
an orbital singlet, i.e. the spins of the conduction electrons at the impurity site are glued 
together to form a total spin se = n/2 ,  which compensates the impurity degrees of 
freedom partially or totally. 

The n-channel Kondo problem has been exactly diagonalized by means of Bethe's 
ansatz [2,3] for a contact interaction at the impurity site and a linearized energy dis- 
persion about the Fermi level with a built-in cutoff. This cutoff is necessary to correctly 
obtain the interaction between different orbital channels. The charge excitations com- 
pletely decouple from the orbital and spin degrees of freedom. The effective attraction 
in orbital space leads to an orbital singlet and maximization of the spin as required 
by Hund's first rule. Within the Bethe ansacz many-particle spin wavefunctions are 
constructed from the ferromagnetic state by gradually flipping spins. Each flipped spin 
gives rise to a spin wave, characterized by a rapidity, which parametrizes its energy and 
momentum. The spin waves may form bound states; in this case the motion of the centre 
of mass is characterized by a common rapidity A. In the thermodynamic limit and in 
thermal equilibrium the thermal population of a bound state of k spin waves is deter- 
mined by the function qk(A) = exp(Ek(A)/T). where ck is the thermodynamic energy 
of the bound state. Here k = 1 corresponds to a free unbound spin wave. The functions 
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q k  are self-consistently obtained as a solution of an infinite recursion sequence, known 
as the thermodynamic Bethe ansafz equations [2,6,14], 

ln[vdA)l= G*In[(l + 7 x - N  + q k + d l  

- a k , a  e x P ( d 2 )  k = l , 2 , 3 ,  . . .  (2) 

G(A) = [4 cosh(nA/2)]-' (3) 

with the integration kernel given by 

where the asterisk denotes convolution and q o  = 0. These equations are completed by 
the asymptotic condition 

lim (Ilk) In[qk(A)] = H/T= Zx, (4) 
k- = 

where His  the field and the impurity free energy is given by 

F , ~ ~  = -TI-: a GF - ~ / n )  W,/T)I [ n i l +  ~ W I .  (5) 

Note that the field and temperature dependence of the equations only enters via the 
asymptotic condition, equation (4). 

In the limits A + -Cm the A-dependence in (2) becomes irrelevant and the equations 
can be solved analytically. The asymptotic solutions are [14] 

2 ln{sin[n(k + l)/(n + 2)]/sin[z/(n + 2)]} 

2In(sinh[(k + 1 - n)xo]/sinh[xo]} 

k < n  

k > n  
( 6 4  In[l + qk(+m)] = 

ln[l + q k ( - m ) J  = 2ln{sinh[(k + l)xo]/sinh[xo]} Vk. (66) 

The functions qk(A) are monotonically decreasing functions of A and interpolate 
smoothly between the asymptotic values at A -f ?" From (6a) it is clear that the qk(A) 
are finite everywhere, except for k = n as A tends to +w, implying that &.(m) = -m, 
Hence, the conduction electron states coupling to the impurity at low Tconsist of bound 
states of n spin waves, i.e. they are strongly coupled in orbital singlet states of effective 
spin se = n/2. All other states are frozen out or decoupled from the impurity at low T. 

For intermediate values of A the recursion sequence (2) has to be solved numerically. 
To implement this solution the infinite sequence (2) is truncated at an index k, and the 
functionsln[l + 17J for k > kcare replaced by an appropriate interpolatingasymptotical 
form. The numerical problem then reduces to the simultaneous solution of k, coupled 
integral equations. Also the range of values of A is truncated at 2 4 ,  where I\, is a value 
of the rapidity so that all the functions qk(A) have reached their asymptotic values, (6). 
The errors in the free-energy derivatives (obtained numerically) are controlled by 
varying k, and 4. Satisfactory results for xo = H/T < 10 were obtained fork, = 50 and 
4 = 56,  This method is similar to the ones employed previously [4,5,8, 10,13,141, 
except that a higher numerical precision is required if IZ # 2S, in particular if n Z 2s. 

This numerical procedure is not accurate enough at low temperatures for HIT > 10 
and the numerical derivatives turn out to be unreliable. This is in part due to the 
exponential behaviour with x, of the asymptotic expressions (6), but arises mainly from 
the exponential dependence on A of the integration kernel and the asymptotic of the 
functions q k  for k s n. The low-T properties of the impurity are determined by the 
A- +os asymptotic of qZ .  This low-T behaviour is particularly difficult to obtain in the 
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overcompensated case. A brief description of the procedure employed for HIT>  10 
can be found in [lo] (a detailed outline is given in [14]). 

Insummary, wesolvethe thermodynamicBetheansatzequationsusing twodifferent 
numerical procedures: a standard one giving good results for H I T  C 10 and a second 
one suitable for H/T> 10. The results for C/T (second temperature derivative of the 
free energy) match at HIT = 10 within a few percent. 

P D Sacramento and P Schlonmann 

3. Results 

As already discussed in the introduction at low temperatures we have to distinguish 
three qualitatively different situations: (i) the undercompensated impurity, S > n e ;  (ii) 
the totally compensated impurity spin, S = n/Z; and (iii) the overcompensated case, 
S < 4 2 .  

Some of the low-T properties can be understood in terms of the zero-temperature 
magnetization, which has been obtained analytically [3,15,16] 

in = exp(iw(2/n) In(H/TH)) ion + 6 ion/= 

(7) 1(2S - n )  - - MW'>" = 
4n3D I, w - i s  

x exp(-(ZS - n)lw[)r(i + i(w/n))r(1- i(m/n))/r(l+ in(o/x)) 
(70) 

and 

in exp(iw(2/n) In(H/TH)) ion + 6  id.^ 

MX"" = -=I-= d o  6J - is (7) 
x (sinhZSo/sinh nw)[r(l + i(w/n))r(? - i (o/n)) / r ( l+ in(w/n))] 

(7b) 

T~ = (2n/n)[(n/2e)n'2/~(n/2)] TK. (8) 

where T, is given by 

In order to extract the small-field behaviour ( H  4 TK) the contour of the integrals in (7) 
has to be closed through the lower half-plane. For the case 2s > n the dominating 
singularity is the cut along theimaginary axis, whichgivesrise to logarithmicsingularities 

MS>" = (s - h){l + (fn)/ln(H/TK) 
U61 

+ (~n)2(InIIn(H/TK)I)/(ln(H/TK)Z + . . .). (94 
Hence, even a small magnetic field aligns the remaining spin of magnitude (S - in)  and 
this remaining spin is only weakly coupled to the electron gas (logarithmic singularities). 
In the case 2s = n the impurity is completely compensated and the cut along the 
imaginary axis does no longer contribute. The leading singularity is due to the pole at 
w = -i.1~/2, which gives rise to a magnetization proportional to the field. The sus- 
ceptibility for S = In is given by [l, 4,5,14,15] 

S/(XTK) (9b) p=" = 

i.e. finite, as expected for a system with Fermi-liquid-like properties. The low-Tfixed 



Thermodynamics of the n-channel Kondo model 9691 

(a) (bl 
is ,  . ...l,,. , ,,,,,,,, , ,- , , ,,,,,,, , ,.,,.,,, , ,~ 

S - 3 1 2  

TIT, T/T, 

Fignrel.EntropyasafunctionofT/TKforS=1,n= 1,. , . ,Sandfourvaluesofthefield 
(a) H = 0, ( 6 )  H = 0.1 T,, (c) H = T, and (d) H = lorK. The entropy vanishes as T- 0 if 
H # 0, but remains finire if H = 0 unless n = 2.9. 

point in this case is a strong coupling one with J - t  m. In contrast, the situation 2S < n 
has a strong coupling fixed point with finite coupling strengthl. The leading singularity 
in (76) is due to the pole arising from the zero of sinh(nw) closest to the real axis (but 
w # 0). The susceptibility diverges with a power law given by [3,10] 

The exponent vanishes if n = 2 and S = & and a logarithmic dependence on the field 
[3,8,12,14,16] i s  obtained as a consequence of a double pole at w = -in/2. Note that 
the critical exponent in (9c) only depends on the number of channels. 

Another quantity of interest is the zero-temperature zero-field entropy of the 
impurity, which can be obtained from (5) and (6u) (using k = 2s) [6,8,10,12,14] 

n z 2 .  ( 9 4  XZScn - H ( - 1 + 2 l n )  

ln[12S - nl + 11 2 S P n  (104 
(lob) 

S(T = 0, H = 0) = { hIsin[x(S + I ) / (n  + 2)]/sin[n/(n + 2)]} 2s s n. 

Hence only for S = in the ground state is a singlet in the absence of a magnetic field. For 
S < n/2 the ground-state entropy corresponds to a fractional spin. It can be shown that 
in thepresenceofafieldthegroundstateisalwaysasinglet [6,15]. At high temperatures, 
on the other hand, the impurity free energy is obtained using (66) 

This is the free energy of a free spin Sin a magnetic field. 
Fimp = - Tln{sinh[(ZS + l)H/2T]/sinh(H/2T)}. (11) 
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Figure 2. Specific heat as a function of TIT, for S = $. n = 1, . . . ~ 5 and four valuer of the 
field: ( U )  H = 0. (b) H = O.lT,, ( c )  H = T, and (4 H = IOTc Note the double-peak 
structure for the overcompensated cases in ( 6 ) .  

The low-T (zero-field) susceptibility is also qualitatively different in the three cases. 
For an undercompensated spin x diverges as (with logarithmic corrections) cor- 
responding to the Curie law for an effective spin (S - n/2). I n  a small field the specific 
heat shows the expected Schottky anomaly [5J. For a completely compensated impurity 
the susceptibility decreases with and the low-Tspecific heat is proportional to T, with 
the proportionality constant being [6] 

Y = (dTK)[S/(S + 111. (12) 

All properties are Fermi-liquid-like and the Wilson ratio is x / y  = (S + I)/?, Critical 
behaviour is again obtained in the over-compensated situation [6,10,12,14] 

 imp cE (T/TK)'-' Cimp /T  OC V/TK ) T - 1  (13) 

where z = 4/(n + 2). Note that the scaling dimensions of the temperature and the field 
are different. For n = 2 the critical exponents vanish and a logarithmic dependence on 
the temperature arises [6,8,10.14]. 

Properties at intermediate temperatures and the simultaneouseffects of temperature 
and field can only be obtained numerically. The results are shown in the figures. We first 
focus on S = i? and study the entropy, the specific heat and the susceptibility as a function 
of n,  T and H .  
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Fiyre 3. Specific heat over temperature as a function of TIT, for S = I, n = 1,. . . , 5  in (a) 
zero-field and (b)  H = 0.1 TK. Note that for H = 0 y is only defined for n = ZF. 
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Figure 4. Susceptibility as a function of TIT, for S = I, n = 1, . . . , 5  and four values of the 
f i e l d : ( o ) H = O , ( b ) H = O . l T , , ( c ) H =  T,and(d)H= lOT,.NoterhatifH=O~diverges 
as T+ 0 unless n = 2s. 

The entropy for S = 4 as a function of Tis  displayed in figure 1. In zero-field the 
entropy(figure l(a)) interpolatesbetweenits T = Ovalue, (lOa)and(lOb),andthehigh- 
T asymptotic, S = ln(2S + 1). Only if n = 2S the ground state is a singlet and Fermi- 
liquid properties are obtained. This situation is realized for magnetic impurities like Fe 
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Figure5,Entropyasa~netionof T/T,forn = 3. 
S = t, 1, 1 and 1. and three values of the field: (a )  
H=O,(b)H=O.IT,and(c)H= T,, 

(n = 2s = 4) and Cr (n = 2s = 5) in simple metals [4], e.g. Cu and Ag. In the presence 
of a magnetic field (figures (lb)-(ld)) the entropy always tends to zero as T+ 0, since 
the Zeeman splitting removes the remaining groundstate degeneracy. Hence, if N # 0 
the ground state is a singlet. For large fields, e.g. H = 10TK (figure Id), all curves are 
similar, but for fields small compared with the Kondo temperature (figure l(b)) a 
qualitatively distinct behaviour is found for the three cases. For n = 2s the singlet 
binding is strong and a heat bath of the order of TK is needed to free the impurity spin. 
For n < 2s the entropy has a strong variation in the temperature range T - H ,  the large 
slope gives rise to the Schottky anomaly. In the over-compensated situation a shoulder 
appears, which is indicative of a double-peak structure in the specific heat [SI. The high- 
T structure is caused by the Kondo resonance and is a consequence of the Kondo 
screening. The low-T structure is very field-dependent and can be associated with 
the removal of the zero-field, zero-temperature entropy (figure l ( a ) )  by the Zeeman 
splitting. 

The specific heat as a function of Tfor an impurity of spin S = 3 is displayed in figures 
(2n)-(2d) for the same values of n and H as in figures 1. The specific heat is just T times 
the slope of the curves shown in figures 1. In zero-field (figure 2(a))  the height of the 
peak is maximum for the n = 2s curve, since the entropy removal is maximum in this 
case. The peaks shown in figure 2(a) are the consequence of the Kondo resonance and 
appear at T - TK. The two-peak structure mentioned above [S,  101 is explicitly seen in 
figure 2(b) for n = 4 and 5. The smaller peak (at the higher temperature) is again the 
Kondo resonance, while the low-Tpeak is strongly field-dependent and is caused by the 
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entropy drop from its H = 0 value (equation ( lob))  to zero. The field dependence of 
this peak follows from the scaling dimensions of the field and the temperature to be on 
an energy scale proportional to H("*')f". For n = 1 and 2 (under-compensated impurity) 
the large peak essentially corresponds to a Schottky anomaly of an effective spin (S - n/ 
2). At higher temperatures the shoulder arising from partial Kondo screening is seen. 
The two peaks for n # 2s merge at higher fields ( H  - TK) and asymptotically approach 
a free spin S Schottky anomaly at very large fields (on a logarithmic scale as expected 
for asymptotic freedom). 

In figure 3 C,,,/Tisshown to highlight the low-Tbehaviour. I f H  = 0 C,,/Tdiverges 
for all n # 2s; for n > 2s it diverges according to (13) and for n < 2S as T-' with 
logarithmic corrections (the T+ 0 entropy is only properly defined with these logar- 
ithms). For n = 2S, on the other hand, C!,,/Tsaturates at the value given by (12). A 
small field dramatically changes the behaviour (see figure 3(b)) and gives rise to a finite 
yin agreement with the expected Fermi-liquidproperties. In the over-compensatedcase 
it follows from the scaling dimensions that for small fields y - H-(n+2)fn [ 171. In all cases 
y decreases with field. 

The susceptibility for an impurity spin S = $ and for several fields is shown in figure 
4. The Curie-like behaviour for a spin S is approached at high temperatures. Figure 4(a) 
displays the zero-field susceptibility, which is finite at T = 0 only if n = 2s (see (9b)). If 
n > 2s (over-compensated spin) x diverges as T - t  0 according to (13) and for n < 2s 
with a Curie law corresponding to an effective spin (S - n/2). Since the ground-state 
degeneracy is lifted by a Zeeman energy, x is always finite if H # 0 (Fermi-liquid 
behaviour). The peaks of x ( H ,  r)  correlate with those of the specific heat. In large fields 
the susceptibilities for the various n merge into the x ( H ,  r )  for a free spin S. 

The entropy for n = 3 as a function of T/TK for various spins and three fields is 
displayed in figure 5. 

4. Concluding remarks 

We have discussed the numerical solution of the Bethe ansatz equations for the n- 
channel Kondo model as a function of field, temperature, the impurity spin and the 
numberofchannels. Threesituations have to be distinguished: (i) the undercompensated 
impurity, (ii) the totally compensated spin and (iii) the over-compensated impurity spin. 
The physical properties are qualitatively different for the three cases. Only then = 2s 
situation exhibits Fermi-liquid behaviour, i.e. the ground state of the system is a singlet 
for all fields. This situation is realized for isolated magnetic impurities (e.g. Fe and Cr, 
described by a Hund's rule ground multiplet of spin S) in simple metals (e.g. Cu and 
Ag) and very good agreement with experiment can be obtained [4] with only one 
fitting parameter (TK). In the under-compensated case, S > n/2,  the low-Tkixed point 
corresponds to an effective spin (S - n / 2 ) ,  which is weakly coupled to the electron gas. 
The impurity is then magnetic at low T,  and probably suitable to describe some of the 
properties of nearly integer-valent Tm-impurities in a metallic environment [5].  

The most exciting case is the over-compensated Kondo impurity. Here the strong 
coupling k e d  point is not the usual J +  k e d  point, but one with finite coupling 
strength [l]. This unusual fixed point has properties reminiscent of critical behaviour. 
The entropy is essentially singular as H and T tends to zero. The susceptibility diverges 
with a power of the field and temperature. Fingerprints of the overcompensated system 
are the two-peak structure in the specific heat at low fields and extremely large y-values 
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as fI+ 0. Two possible applications of this situation (for S = 4) are the quadrupolar 
Kondo effect (n = 2) [7,8] and the low-Tfixed point of a two-level system interacting 
with conduction electrons (an atom in a double-well potential with electron-assisted 
tunnelling) 19, lo]. In both cases the magnetic field in the Kondo problem corresponds 
to a lattice distortion. Due to the divergent 'quadrupolar' susceptibility a tetragonal 
lattice distortion is induced by the quadrupolar Kondo impurity below a critical tem- 
perature T,. For the same reason the symmetric double-well configuration is not stable 
for a tunnelling atom at very low T. 

The same properties as for the n-channel Kondo impurity hold for a magnetic 
impurity of spin S' embedded in the antiferromagnetic Babujian-Takhtajan Heisenberg 
chain of spin S [12]. Again, if S' > S the impurity is undercompensated, if S' = S the 
impurity is just one more link in the chain and if S' < S the over-compensated situation 
is realized. At low r a n d  for small H the Bethe anratz equations are identical to those 
of the Kondo problem. 

P D Sacramento and P Schlottmann 

Acknowledgment 

The financial support by the US Department of Energy through grant DE-FGOS- 
91ER45443 is acknowledged. 

References 

[ l ]  Nozieres P and Blandin A 1980 J .  Physique 41 193 
121 Andrei N and Deslri C 1984 Phys. Rev. Letl. 52 364 
131 Wiegmann P B and Tsvelick A M 1983 Pi?. Zh. E k p .  Tear. Fix. 38 489 (Engl. Transl. JETP Lett. 38 591 

[4] Sacramento P D and Schlottmann P 1990 Solid State Commun. 13 147; 1990 Phys. Rev. B 42 743; 1991 

IS] Schlottmann P 1989 Phys. Rep. 181 1 
[6] Tsvelick A M 1985 J .  Phys. C: Solidstate Phys. 18 159 
171 Cox D L 1987 Phys. Rea. Lett. 59 1240; 1988 J .  M a p .  Map.  Mater. 7&77 53; 1988 Physica C 153 1632 
[E] Sacramento P D and Schlottmann P 1989 Pkys. Len. 142A 245 

[9] Muramatsu A and Guinea F 1986 Phys. Reo. Lett. 57 2337 

(1983)) 

Physica B 171 122 

Due lo numerical inaccuracy S(T+ 0, H - t  0) was incorrectly reported to be small but finite. 

1101 Sacramenta P D and Schlottmann P 1991 Phys. Rev. B 43 13294 
[ l l ]  AndreiN and Johdnnesson H 1984 Phys. Leu. lOOA 108 

Lee K and Schlottmann P 1988 Phys. Reu. B 37 379 
[I21 Schlottmann P 1991 J .  Phys.; Condens. Molter3 6617 
[I31 Sacramento P D and Schlottmano P 1989 Phys. Reo. B 40 431 
1141 Desgranges H U 1985 3. Phys. C: SoIidSrate Phys. 18 5481 
[IS] Sacramentop D 1991 PhD Thesis Temple Universityunpublished 
[ 161 Tsvelick A M and Wiegmann P B 1984 Z. Phys. B 54201; 1985 J .  Slot. Phys. 38 125 
[I71 Sacramento P D and Schlottmann P 1991 J .  Appl. Phys. 70 at press 


